COMMUNICATIONS TO THE EDITOR

Absolute Configuration of Migrastatin, a Novel 14-Membered Ring Macrolide

Sir:

Migrastatin (1), a novel 14-membered ring macrolide, was isolated from a culture broth of *Streptomyces* sp. MK929-43F1.¹⁾ It inhibits both anchorage-independent growth and migration of human tumor cells.²⁾

Previously, we reported the planar structure and geometry of the three olefins in the 14-membered ring of $1.^{3)}$ In this communication, we describe the absolute structure of 1 determined by X-ray crystallographic analysis as shown in Fig. 1.

Treatment of 1 (28.9mg) with *p*-bromophenacyl bromide (56.0 mg) and K₂CO₃ (9.0 mg) in DMF (1 ml) for 40 hours at room temperature gave crude N-phenacylated Pure *N-p*-bromophenacylmigrastatin migrastatin. (2, 7.2 mg) was obtained, after purification on preparative SiO₂ TLC twice with toluene-acetone (2:1, Rf 0.71) and then hexane - ethyl acetate (1:1, Rf 0.20). Crystalline plates of 2 were obtained from MeOH-H₂O. Physico-chemical properties: mp 134~137°C; $[\alpha]_{D}^{20}$ +9.9° (c 0.48, MeOH); FAB-MS m/z 686 and 688 (MH⁺); IR (KBr, cm⁻¹) 1707, 1682; ¹H NMR (500 MHz, CDCl₃) δ 0.97 (3H, d, J=7.0 Hz, 22-H), 1.13 (3H, d, J=7.0 Hz, 24-H), 1.87 (3H, d, J=1.5 Hz, 23-H), 2.53 (2H, t, J=7.0 Hz, 16-H), 3.31 (3H, s, 27-H), 2.79 (1H, s, 9-OH), 5.10 (1H, d, J=10.0 Hz, 13-

Fig. 1. Structure of migrastatin (1) and *N-p*-bromophenacylmigrastatin (2).

H), 5.16 (2H, s, 28-H), 7.64 (2H, m, 32-H and 34-H), 7.82 (2H, m, 31-H and 35-H).

The X-ray crystallographic study of **2** was carried out as described below.

A colorless plate crystal of 2 ($C_{35}H_{44}NO_8Br$) having approximate dimensions of $0.20 \times 0.08 \times 0.03$ mm was mounted in a loop. All measurements were made on a Rigaku RAXIS-RAPID Imaging Plate diffractometer with graphite monochromated Mo-K α radiation at -150°C. The crystal data of 2 are shown in Table 1. Of the 11552 reflections which were collected, 4179 were unique $(R_{int}=0.112)$; equivalent reflections were merged. The linear absorption coefficient, μ , for Mo-K α radiation is 12.3 cm⁻¹. A symmetry-related absorption correction using the program ABSCOR⁴⁾ was applied which resulted in transmission factors ranging from 0.75 to 0.96. The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods⁵⁾ and expanded using Fourier techiniques.⁶⁾ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement⁷⁾ was based on 4161 observed reflections (I>3.00 σ (I), 2 θ <54.77) and 407 variable parameters and converged with unweighted and weighted agreement factors of R=0.146, Rw=0.268 and R1=0.086 (for I>2.0 σ (I) data). The maximum and minimum peaks on the final difference Fourier map corresponded to 0.63 and $-0.77e^{-}/Å^{3}$, respectively. The absolute configuration of the molecule was determined based on Flack's parameter, 0.044(32), and confirmed by the method of Bijvoet

Table 1. Crystal data of 2.

Formula	C ₃₅ H₄₄NO ₈ Br
Formula weight	686.64
Crystal system	monoclinic
Cell constants	
а	10.696(3)Å
b	5.773(2) Å
С	28.357(8) Å
β	96.430(4)°
V	1739.9(8) Å ³
Space group	P2,
Z	2
D _{calc}	1.31 g/cm ³
μ (ΜοΚ α)	12.3cm ⁻¹

Fig. 3. Result of modified Mosher's method.

 $\Delta \delta \text{ (ppm, in CDCl}_3) = \delta_{(\mathcal{S})\text{-MTPA}} \ \text{-} \ \delta_{(\mathcal{R})\text{-MTPA}}$

inequality relationships. Comparing $|Fo(hkl)|/|Fo(\bar{h}k\bar{l})|$ and $|Fc(hkl)|/|Fc(\bar{h}k\bar{l})|$ for 172 Friedel pairs for which the differences $||Fc(hkl)|-|Fc(\bar{h}k\bar{l})||/\sqrt{\sigma}F_0(hkl))^2 + \sigma(F_0(\bar{h}k\bar{l}))^2$ are greater than 1.0, 159 pairs showed consistently the absolute configuration in Fig. 2. All calculations were performed using the teXsan⁸⁾ crystallographic software package of Molecular Structure Corporation.

Results of modified Mosher's method⁹⁾ were also in agreement with the absolute stereochemistry elucidated by

the X-ray crystallographic analysis as shown in Fig. 3.

Consequently, four asymmetric centers in the lactone ring and one in the side chain of migrastatin (1) were determined to be 8*S*, 9*S*, 10*R*, 13*R* and 14*S*, respectively. Among them, stereochemistries of C8, 10 and 13 are consistent with a configurational model for macrolide antibiotics proposed by CELMER.¹⁰⁾

Hikaru Nakamura^a Yoshikazu Takahashi^{a,*} Hiroshi Naganawa^a Koichi Nakae^b Masaya Imoto^{b,**} Motoo Shiro^c Koji Matsumura^d Hidenori Watanabe^d Takeshi Kitahara^d

^a Institute of Microbial Chemistry,

- 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan ^b Department of Applied Chemistry, Faculty of Science and Technology, Keio University,
- 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan ^c Rigaku Corporation,
- 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan ^d Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo,
- 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

(Received December 5, 2001)

* Corresponding authors: * takahashiy@bikaken.or.jp, ** imoto@applc.keio.ac.jp

References

- NAKAE, K.; Y. YOSHIMOTO, T. SAWA, Y. HOMMA, M. HAMADA, T. TAKEUCHI & M. IMOTO: Migrastatin, a new inhibitor of tumor cell migration from *Streptomyces* sp. MK929-43F1. Taxonomy, fermentation, isolation and biological activities. J. Antibiotics 53: 1130~1136, 2000
- TAKEMOTO, Y.; K. NAKAE, M. KAWATANI, Y. TAKAHASHI, H. NAGANAWA & M. IMOTO: Migrastatin, a novel 14membered ring macrolide, inhibits anchorageindependent Growth of human small cell lung carcinoma Ms-1 cells. J. Antibiotics In press.
- 3) NAKAE, K.; Y. YOSHIMOTO, M. UEDA, T. SAWA, Y. TAKAHASHI, H. NAGANAWA, T. TAKEUCHI & M. IMOTO: Migrastatin, a novel 14-membered lactone from *Streptomyces* sp. MK929-43F1. J. Antibiotics 53: 1228~1230, 2000
- 4) HIGASHI, T.: Program for Absorption Correction, Rigaku Corporation, Tokyo, Japan
- 5) Altomare, A.; M. C. Buria, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G.

MOLITERNI, G. POLIDORI & R. SPAGNA: SIR97: a new tool for crystal structure determination and refinement. J. Appl. Cryst. 32: 115~119, 1999

- 6) BEURSKENS, P. T.; G. ADMIRAAL, G. BEURSKENS, W. P. BOSMAN, R. DE GELDER, R. ISRAEL & J. M. M. SMITS: The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994
- 7) Least-Squares: Function minimized: $\Sigma \omega (Fo^2 Fc^2)^2$ where $\omega = 1/\sigma^2 (Fo^2) = [\sigma_c^2 (Fo^2) + (p(Max(Fo^2, 0) + 2Fc^2)/3)^2]^{-1} \sigma_c (Fo^2) = \text{e.s.d.}$ based on counting statistics p = p-factor
- Crystal Structure Analysis Package, Molecular Structure Corporation, 1985 & 1999
- 9) OHTANI, I.; T. KUSUMI, Y. KASHMAN & H. KAKISAWA: High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc. 113: 4092~4096 1991
- CELMER, W. D.: Macrolide stereochemistry. III. A configurational model for macrolide antibiotics. J. Am. Chem. Soc. 87: 1801~1802, 1965